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PLANAR AND AXIALLY SYMMETRIC CONFIGURATIONS WHICH ARE CIRCUMVENTED WITH 
THE MAXIMUM CRITICAL MACH NUMBER* 

A.N. KPAIKO 

The structure of planar and axially symmetric configurations which, by 
satisfying a number of geometrical constraints, are circumvented in a 
boundless space or in a cylindrical channel by an ideal (non-viscous and 
non-thermally conducting) gas with a maximal critical Mach number M*is 
found. The analysis is carried out using the "rectilinearity property" 
of a sonic line in "subsonic" flows (SF), the "principle of a maximum" 
for an SF and "comparison theorems" which are either taken from /l/ or 
serve as a generalization of the corresponding assertions from /l/. 
Following /l/, configurations are considered which have a plane or axis 
of symmetry parallel to the velocity V_ of the approach stream, while 
flows in which (including the boundary) the Mach number M< 1 are said 
to be "subsonic". As usual, by M* we mean a value of M, such that the 
inequality M< 1, which is satisfied in the whole stream when M,,(M*, 
is violated when M,>M*. 

The configurations investigated include closed bodies and the leading 
(trailing) parts of a semi-infinite plate or a circular cylinder in an 
unbounded flow and in a channel as well as lattices of symmetric profiles. 
Both in /l/, where the structure of closed planar and axially symmetric 
bodies was found, as well as in /2/, where such bodies were constructed 
numerically, the generatrices of all the configurations investigated 
contain the end planes or the segments replacing them of the maximum 
permissible slope (in modulus) and the "free" streamlines with Mri. 

Now, however, unlike in /l, 21, segments of the horizontals are added to 
it in the general case. Furthermore, in the case of flows in channels 
and lattices, the configurations which have been found can be circumvented 
with the development of finite domains of advancing sonic flow. 

1. Let us begin with the generatrix ab of a closed body in an unbounded flow (Fig.l,a) 
with the points a and b on the x-axis of a Cartesian (in the planar case) or cylindrical (in 
the axially symmetric case) coordinate system. The x-axis is directed along V, and lies 
in the plane of symmetry of the body (or coincides with this axis) while the origin of co- 
ordinates and the linear scale are chosen such that x, = 0 and x*=1. Here and sub- 
sequently, the indices a, b, . . . are ascribed to parameters at the corresponding points. 

By virtue of the d'Alembert paradox which is valid in the case of a continuous subsonic 
flow, there is no difficulty in constructing, at any fixed M, <I, the set of bodies B with 
a coefficient of wave resistance c, equal to zero. In particular, all sufficiently smooth 
thin bodies, the thickness of which, Y, is smaller, the closer M-is to unity, will be members 
of this set. On the other hand, it is clear that, when there is a constraint on the smallest 
permissible size of the maximum midsectign Y> 6, on the volume ofthebody n > [;2" or on 
the area S> S" between the generatrix ab and the x-axis (in the planar case the volume per 
unit width of the body is identical with S), where 6,Q" and S"are positive constants, a 
subsonic flow and, as a corollary, c, = 0, are not realized at any M, < 1. Furthermore, the 
introduction of an internal convex angul&rity of the contour ab (i.e. with an "external" angle 
greater than 25-c) leads to the emergence, during its circumfluence, of a local supersonic 
zone (LSZ) and the appearance of wave resistance for any M,>O. no matter how small. 

It is also necessary to take into account that the special techniques for the correction 
of profiles, which are being intensively developed and ensure a practically shock-free re- 
tardation of the gas in an LSZ and, consequently a value of e, close to zero, assume a fixed 
circumfluence regime and do not guarantee c,l: 0 even when M, are smaller than the calculated 
value (but larger than M*). There is, therefore, undoubtedly interest in configurations which 
are circumvented with the highest possible M * but for which a subsonic flow with C, = 0 is 

realized when M, < M* according to the definition of M* itself. 
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Fig.1 

/M*is a functional of the shape of the body B which we shall write in the form M* = 
&I* (B) and, consequently, the problem of constructing the generatrix ab is a variational 
problem, the solution of which depends on additional constraints which, in particular, are 
of a geometrical nature. In the form being discussed this problem is non-standard. In spite 
of this, one may immediately point out its trivial solution which is important in its sub- 
sequent solution: at zero 6,Q"' and Sm,the line segment ab realizes the maximum of .lf* = 1, 
that is, the iptimal body B is a plate or a needle. Secondly, by carrying out a special 
"Gedanken experiment" which is characteristic in the case of variational problems in gas 
dynamics and invokes the result which has just been obtained (see /i', 8/), it is possible to 
establish the important elements of the solution. Apart from the constraint on the maximally 
permissible length taken for the linear scale, let just one of the conditions on Y,Q or S 
figure in the problem as an additional condition. Forgetting the constraint on the length for 
a while, let us construct the optimal generatrix ab which, by joining the points a and b with 
ya = y, = 0, 5, = 0 and xb= 1 and satisfying one of the conditions 

Y > 6, Q > Q”, s 2 S” (1.1) 

realizes a maximum in M*. In an analogous formulation, which includes the segments aa' and 
bb’ in the geneatrix ab as shown in Fig.l,b, it is possible by passing to the limit x~,+ 
--oo and xb.-+ co for'any smooth convex arc a’b’ to approach as closely as may be desired 
to the plate or needle with the greatest possible M* = 1. Since, however, the constraint on 
the length is not satisfied in the construction of such an "optimal" generatrix, we conclude 
from this that the optimal generatrix which satisfies the above-mentioned constraint will, in 
fact in the general case, contain the ends aa' and bb’ as shown in Fig.l,c. When the maximum 
permissible length is specified, the same conclusion is also valid in the case of additional 
conditions differing from (1.1) if one applies similar reasoning to these as was done in the 
case of Fig.l,b. On the other hand, the conclusion, indicating the fundamental possibility 
of the ends appearing in the optimal generatrix in the general case, still does not guarantee 
their mandatory presence for any values of the decisive parameters of the problem. In this 
connection let us point to an analogy with the leading parts of fixed length which realize a 
minimum in c, within the framework of Newton's law of resistance. Here, as is well-known /7- 
9/, axially symmetric leading parts always have bluntness but planar leading parts only have 
bluntness when Y>l, where Y is referred to the length of the half thickness of the body. 
It therefore follows that the discourse surrounding Fig.l,b should only be considered as a 
guide. In order to draw more definite conclusions concerning the shape of the optimal 
generatrixlab we invoke an apparatus which is similar to that developed in /l/. 

Let us begin with the rectilinearity property (RP) of a sonic line (SL) in a two-dimen- 
sional subsonic flow (SF). Such a line within a subsonic flow on which M = 1 while MCI 
on just one side of it is subsequently referred to as a sonic line. On the other side of the 
sonic line, MQ 1. The case when M= 1 is necessary in the analysis of the circumfluence 
of lattices and bodies in a cylindrical channel. In spite of the latter refinement, we find 
by practically literally repeating the reasoning in /l/ that a sonic line in a subsonic flow 
is rectilinear, perpendicular to V at each of its points and cannot terminate within the flow. 
The impossibility of the occurrence of isolated "sonic points" within a subsonic flow which 
a subsonic flow which is proved using the same method may be looked upon at the same time as 
flowing from the rectilinearity property as a result of the absence of internal terminal 
points of a sonic line. It follows immediately from the RP that, during the subsonic 
circumfluence of closed planar (not necessarily symmetric) and axially symmetric bodies as 
well as the leading and trailing parts by an unbounded flow with IV, < 2, the Mach number can 
only attain its limiting value M = 1 on the surface of the body. The validity of this 
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assertion, which is called .followi.ng /l/ the "maximum principle" for a subsonic flow, is 
proved using the contrary assertion since, by assuming the opposite, we obtain a sonic line 
in the form of a half line (line) which goes away at infinity where, however, M = Mm< 1. 

The "comparison theorem" (CT) which is proved by invoking the maximum principle (MP) 
and the essence of which is illustrated by Fig.l,d, serves as the next stage in the con- 
struction of a body around which flows occurs with maximum M*. In fact, let a body B'lie 
within 3 while touching the latter at a point c which differs from a and b and let Ma< 

M,"< 1 and a "grade" be ascribed to the parameters of the flow circumventing 3". Next, let 
B and B"be surrounded by a subsonic flow without the occurrence of detachments (this is 
implied in /l/). Then, V,"> V,. 

Since the comparison theorem (CT) has been proved in /l/, we shall only dwell on points 
which refine this proof. The stress function Q? corresponding to the body B, satisfies the 

equation 

Eere, u and u are the z- and y-components of V,a is the velocity of sound, and V= 0 
and 1 respectively in the planar and axially symmetric cases. According to the definition 

of Q PW’ = Qy, P”YV = -Qx (f.3) 

and, by virtue of the isoenergetic nature and isoentropic nature of the flow 

2i + u* + vs = ZI_, s- S_ (1.4) 
where p is the density while i and s are the specific enthalpy and entropy. In this case it 
is convenient to consider the equations of state specified in the form 

i = @c (s, a"), p = p (s, B") U.5) 

It is next assumed that all the quantities appearing in (1.2)-(1.5) are dimensionless 
with the critical velocity and density as the corresponding scales. Then, in the case of an 
ideal gas with constant heat capacities 

21, = (x + i)i(x - l), u (6, a2) = l/(x - 1) 

and, as a corollary of this , the coefficients of Eq.(1.2) are 

Ail= A~r(".'v'Q~*Q,), Ak = Ak(~,~v,QX,Qy) ('4 

where x is the adiabatic index. In the case of gases with more complex therm~~~icar~nts 
of the functions (1.6), the dimensionless values of the physical constants appearing in (1.5) 
are put in instead of x. Next, in the comparison of different flows, it is essential that 
Ail and Ak on the one hand and A$ and AkO on the other hand are identical functions of yv 
and QX, QV and QB, Qg,' respectively. In the case of a non-ideal gas this is known to be 
valid when the dimensioned critical parameters of the flows being compared are identical. 
According to (1.6), this is not required in the case of an ideal gas. Furthermore, since, as 
is well-known /lo/, p, a and v= Iv[ are two-valued functions of the flow density 1 zpV= 

I/%? + ?gwJ2, it is important in the subsequent development that the corresponding single- 
valuedbranches should exist when M .< i and, consequently, also single-valued relationships 
between Azj and Ak and cyv.QS and %. 

The equations 

Qr = 9, Q (G Y) -Y '*'i e. /(i i v) when rZgzlz* + ya - 03 (1.7) 

serve as boundary conditions for the determination of Q, where r is a flow line composed of 
two half paths (z<za and =>xtJ of the x-axis and the generatrix of the body B. The 
equations and conditions (1.2)-(1.7) with the "grade" index accompanying all the symbols 
(apart from Z.Y,X and v) also determine the stream function Q" corresponding to the 
circumfluence of B”. The function oz Q’-Q is defined outside of B and on T. In the case 
of a continuous circumfluence, Q">O everywhere outside of E" 

or > 9, 0 (z, P) - gV (j ," - i,)i(i + v))/ 0 when 7 -W ft.@ 

and, in the first condition, the equality only holds on the common segments of r and F, 
including their tangent points, while, in the second condition, it only holds when M,"= M,. 
In writing out the second condition , account has been taken of the fact that, if og,w< I, 
then j is a monotonically increasing function of M. Outside of B, the function o satisfies 
the equation 

L'(o) + (A,," - -WQxx - 2 (A,,'- Au)Q",Y + (4: -4,)Quv + 
(A; - A,)%+ (Az" - &)Qu = 0 

U.9) 
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in which the coefficients of the operator L” are not functions of wX and oy but the same 
functions of q2" and rpV" as in LD(qo). It follows from (1.9) that o cannot have maxima or 
minima at internal points of a subsonic flow which differ from an infinitely remote point. 
Actually, by assuming the opposite to be the case, we obtain that, at such points, 

OXI 9 x o - +=o, oy Gl&~-l& -0 

By virtue of these equalities andthe fact that, according to what has previously been 
said, the coefficients dit,Ax,A$ and Aka in a subsonic flow are single-valued functions of 
h and tlW or zpX" and qW", here (1.9) reduces to the equation 

(1 - iFfw-‘,‘) wxs - 2 ~fu”‘z,o,,f + ( f - Moq ovy = 0 (1.10) 

which, as is well-known, cannot be satisfied, when @'~&fuB+ M,,z<i, either at maximum or 
minimum points of 0. Next, let n be measured off along the normal to 3 or to B” at the point 
c. Then, allowing for the result which has been obtained and the fact that, by virtue of 

(1.3), +/an ~9, = P~~I", we shall have 

((W/C%), E yz (j" - i)C > 0 

Since, when MSi, the density of the flow increases montonically with V, it follows 
from this that V," % V,. Actually, however, the strict inequality 

I;,+ > c‘, (1.11) 

is satisfied at all points of contact of the bodies B and B" EB which do not coincide 
identically. The transition to (1.11, which completes the proof of the comparison theorem re- 
ferredtoin/l/ asthe ~~~da~~intle~a", wascarriedout there using an exceedingly complex 
method and was bounded by the "regular points" (FiP) of B at which the second derivatives of 
21 with respect to z and y are finite. In practice, (1.11) follows almost directly from 
(1.9) and in a more general case. In fact, let us assume that V,O = V,. Then, as at the 
points of the extremum of e, here Aij"=Aij and Ak’= Ak and, what is more, on= oI= 0.. where 
T is read off along the generatrix ab and, consequently, w, = WY = 0. Hence, Eq.(1.9) in 
a small neighbourhood of c is found to be as close to (1.10) as may be desired and not only 
when c is a regular point but also for other non-regular points (but they are only subsequently 
encountered) in the approximation to which the second derivatives of J, tend to infinity more 
slowly than the coefficients in (l-9), standing in front of them, tend to zero. At the same 
time, by virtue of the maximum principle in the case of CO, the "half of the minimum" of the 
surf ace o= o(x,y) which is cut off by the generatrix of B is adjoined to the point c when 
o,=o,=O - This, however, is impossible as in such a case the left side of (l.lOfwould dif- 
sfer fromzerobyafinite smountwhen M< 9 and, consequently, Eq.(1.9) could not be satisfied 
in a small neighbourhood of c. Finally, we note that, in (1.9f, Lo and $ can be simultaneously 
replaced by L and *". When this is done, the conditions formulated above on &,-.. are 
replaced by the analogous conditions on qXX".... 

Using the comparison theorem, let us now construct a closed body of fixed length which, 
by satisfying the three conditions 

y< A, B> Q"', S> S" (1.12) 

realizes a maximum in .W*. The main difference in the given formulation from the generalization 
of the formulation of the variational problem from /I/, to which the inequalities (1.11 
correspond instead of the equalities in /l/, is not in the number of constraints but in the 
sense of the first of them. In (1.121, the thickness of the body, when Q-and S* differ from 
zero, must not exceed the maximum permissible value of A while, in /l/ and in (1.11, on the 
other hand, the maximum midsection of the body cannot be less than the minimum permissible 
value of 6. By virtue of (1.121, the generatrix of the body does not pass outside of the 
rectangle Bb: O< X< 1, U,< y< A which is shown in Fig.l,e and f by the broken lines. If 
Q*and Si are the values of Qand S corresponding to it, then Qrn< Sla and S” < SA, and, more- 
over, when !P=!& or Sm= SA, the generatrix ab has breaks and M* = 0. 

Let us show that the contour of the closed optimal body B of fixed length which satisfies 
conditions (1.12) and which realizes a maximum value of M*in an unbounded subsonic flow 
depending on the values of A,Q" and S" either, as in /I/, consists of the ends x= 0 and 
x=1 and the flow line h4 = 1 joining them, or it contains an additional segment of the 
horizontal y = A\.. Both situations are depicted in Fig.l,e and f, where M= 1 on a'bl and 
a’b” and b"b' respectively. 

According to the equations of motion, @J&z = -pV%@i& where @is the angle between V 
and the x-axis and p is the pressure. It follows from this that, in a subsonic flow in 
which we have 86/& g0 on the segments of the "sonic" streamlines where @ian> 0, these 
segments and, with them, also the optimal contours in Fig.l,e and f are consequently non- 
concave. In such a case any body B’, which satisfies the conditions listed above, is either 
identical to B or it just partially emerges out of it, lying nevertheless as B within BA. Let 
us surmise that it is B'rather than B which'is optimal, i.e. IV*"> M*. Then, after an affine 



contraction which does not change the cirumfluence, we arrive at a body B”’ which comes into 
contact with B at not less than one point Cc or c and c') of the interval M = V = 1. However, 
according to the comparison theorem, V">V=l at such points and, consequently, contrary 
tothepostulate, the flow around B’is not subsonic and B’,by virtue of the definition, is 
non-optimal. 

Within the framework of the comparison theorem the result in /l/ is readily generalized 
to bodies which satisfy, for the same maximum permissible length , not just one of the con- 
ditions (1.1) but all three at once. In this case the thickest of the three bodies with a 
single sonic flow line (Fig.l,e), constructed respectively for Y = 6, D = ST’ and S=S", 
is optimal. Another generalization is obtained if, instead of the first condition from (1.11, 
the more natural requirement of the disposition of a specified body G within B is introduced. 
Examples of optimal configurations which are obtained when this is done with the help of the 
comparison theorem in the case when the position of G is fixed relative to the interval ab 
of the x-axis and there are no conditions on Q and S are shown in Fig.l,g to j, where the 
bodies G are hatched in and M = 1 on a’cb’, a’a”, b”b’ and a’b’. At the same time, the 
contours of B and G can have both individual common points (c in Fig.l,g and h) as well as 
common segments (c’b in Fig.l,g, a"b" in Fig.1, i and b’b in Fig.l,j). If a displacement 
of a body G is permitted , then its position is taken such that, for any permissible shifts of 
G, the thickness of B in the neighbourhood of justoneof the intervals M = 1 increases. 
In particular, bodies G with a vertical plane of symmetry must be located midway along the 
interval ab. 

Fig.2 Fig.3 

2. In addition to the contours of closed bodies there is also interest in "unclosed" 
generatrices which may be considered as the leading or trailing parts of sufficiently long 
bodies and, in the axially symmetric case , as the transition sections linking cylinders of 
different radii. At the same time it is natural to replace long bodies by a semi-infinite 
plate or a circular cylinder with generatrices parallel to V,. 

Schemes for the configurations being considered are shown in Fig.Z,a and b which also 
illustrate the choice of coordinate axes and linear scale. Unlike in Fig-l, it is now just 
one of the end points of the required optimal contour ab which does not lie on the x-axis. 
In the case of the transitional axially symmetric segments (Fig.2,b) the ordinates of both 
terminal points differ from zero. Apart from the maximum permissible length of the body 
which, as previously, is taken as the linear scale, the maximum and minimum permissible values 
of y on ab are fixed as a result of which the required generatrices must be located in 
rectangles which are bounded by intervals of the x- and y-axes and the dashed lines in Fig. 
2,a and b. 

As previously, the conditions on Q and S from (1.1) may be introduced as additional 
constraints and, here, by P and S, we understand the volumes and areas of the above-mentioned 
rectangles or bodies, which are obtained by rotating them around the x-axis, cut off by the 
generatrix ab. The forces which act on the leading and trailing parts and on the transitiona 
segments are obviously different from zero at any Mach numbers. Nevertheless, in this case 
also, if in the whole of the flow M,< 1 when there is continuous circumfluence, the coef- 
ficient of wave resistance is equal to zero as in the case of closed bodies. Here, there is 
also interest in generatrices which realize a maximum value of M*. 

The construction of such optimal generatrices, as in the case of bodies with a closed 
contour is carried out with the aid of a version ofthecomparison theorem the formulation 
and proof of which barely differ from those for the comparison theorem from /l/ which was 
used above. The principal difference lies in the fact that the condition as r--o0 from 
(1.7) is now replaced by 

$ CT, Y) - i,y @iA, Y/A, 6 f A, v) when T I A - CO 

Here A and 6 are the maximum and minimum permissible values of y on the contour 



(d=Y,=cI,~=i;b in Fig.2,a and 6=-y,,A=y, in Fig.Z,b) and the non-negative function *Y 
is independent Of the shape of the leading and trailing parts or the transitional segment and 
y (-9 1, .) = Y (co, 6 i A, . .) = o. Furthermore, we shall subsequently consider bodies with 
identical A and 6,'i.e. which solely differ in the finite interval of the s-axis (as applied 
to the leading parts and the corresponding transition segments when o<s<2 and to their 
trailing analogues when -I<z<~). Allowing for what has been said and Figs.Z,c to e which 
explain the meaning of the comparison theorem which is subsequently used, we conclude that, 
in the case of bodies B and B"=B when %>M," _>W,, the inequality P>i' holds at points 
of contact and on common segments of the contours of B and 0". AII obvious exception is con- 
sitituted by infinitely remote points of the halflines y=6 and y = A, where IV,,,' = M, and 
the velocities of the flows being compared are identical. 

With the help of the comparison theorem it is now possible to establish that, in the 
cases being considered, the optimal generatrices consists of the ends (x = 0 for the leading 
parts and I=1 for the trailing parts and the corresponding transition parts), the stream- 
lines M = 1 and segments of the horizontals Y = A, as can be seen from Figs.2,a and b and, 
moreover, the segments of the horizontals, only appear when there are constraints on D and S. 
As Q2" and Sm decrease, which cooresponds to an "easing off" of the constraints, M*increases, 
attaining a maximum in the case of the generatrix ab without a horizontal part when A and 
6 are fixed (S-O in the planar case). The same generatrix is optimal when none of the 
conditions (1.12) apply, i.e. also among configurations with y> A. 

The validity of everything that has been said is proved by assuming that the opposite 
is true. In doing this, as a rule, instead of the affine contraction employed in Sect.1, it 
is sufficient to shift the bodyB"being compared to the right (in the case of the leading 
parts) or to the left (in the case of the trailing parts) until one of the situations depicted 
in Figs.2,c and d inevitably arises, leading to a contradiction. AI-Z affine contraction is 
only invoked in the comparison of the optimal body with thicker bodies &>A). Finally, we 
note that, by virtue of what has been said, the sharpened leading parts constructed in /ll/ 
cannot be optimal (with respect to %I*). 

3. Now let a body B with a non-concave generatrixbe surrounded by a subsonic flow with 
M=M,<l as /z[-+w, but not in an unbounded space but rather in a cylindrical channel ’ 
(Fig.3,a where the double line is the generatrix of the wall of the channel). Let another 
body B"of the same length also be surrounded by a subsonic flow with M,"> M, and let the 
generatrices of B and B" intersect. By mentally contracting B'together with the tube in an 
affine manner with the centre on the x-axis withinB'and, consequently, not changing the 
flow, we arrive at a body 3"'EB which is such that the generatrices of B and B"'wil1 
either touch one another or have common segments. Then, Vu'> V at common points of B and 
B"' which are different from a and b which consitutes a further version of the comparison 
theorem. 

In proving this, we must take account, in addition to what has been said previously, of 
the fact that the flow lines of the subsonic flow flowing round B initially become monot- 
onically more remote from the axis of the channel and then again monotonically approach it 
(if the body B has a plane of symmetry normal to the x-axis, this follows at once from the 
maximum principle for u!. Hence, on the line da', into which the wall of the tube is trans- 
formed under the affine contraction, +<q((--, yd). Consequently, the function w (2. Y) rgw (2, 
Y) - 9 (x3 Y). which is defined in a band bounded by the axis of the channel, the generatrix ab 
and the straight line dd, is non-negative on the whole of the boundary which has been 
indicated. The further course of the proof of the comparison theorem is the same as that 
presented in /l/ with the refinements of Sect.1. 

In addition to the comparison theorem, let us further recall the property of the recti- 
linearity of a sonic line in a subsonic flow which was invoked in Sect.1. Now, however, the 
appearance of straight sonic lines with M( 1 on the one hand and .!I= !, on the other hand, 
in a subsonic flow does not contradict this property. Such sonic lines bound the "sonic 
regions" (SR), i.e. domains of uniform sonic flow. 

The version of the comparison theorem which has been formulated and yet another version 
which is similar to it for bodies with an open contour together with what has been said above 
in connection with sonic lines and sonic regions in a subsonic flow enables one to find the 
structure of the closed and unclosed generatrices of such bodies of fixed maximum permissible 
length which, when subject to the additional constraints (l-l), (1.12) or parts of them (for 
example, without the conditions on Y and y) realize a maximum value of M*. When this is done, 
together with configurations of the same structure as inthecase of an unbounded flow (they 
are knowingly realized in the case of a small "loading" of the channel, when ke - Q"lR2+"< 1 
and 'ks~,$m/R2~1, where R is the half-height or the radius of the channel), horizontal 
segments appear, starting from certain values of kn and ks even in the absence of the condition 
on y from '(1.12) for the optimal generatrices. The sonic domains are located over such 
segments. These domains are bounded from two sides or from one side by rectilinear sonic 
lines which are normal to the walls of the channel. 
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Figs.S,b-d illustxate what has been said and, in Fig,3,b, M = 1 on a'b' and in the 
rectangle a”a’b’b”, in Fig.3,c, on a’b’ and everywhere to the right of b’b” and, in Fig.3,d, 
on a'b' and everywhere to the left of a'a". The latter example is also of interest in that 
M* = M, = 1 for this case. In an unbounded flow this only holds in trivial examples of 
the flow round a plate or needle of zero thickness. We note, by the way, that, in spite of 
the absence of discontinuities and the increase in entropy associated with them, CX, which is 
defined in the usual manner, differs fxam zero in the cases of Figs.3,c and d (moreover, c,<O 
in the case of Fig.3,d). It is natural that, since the realization of the flows depicted in 
Figs.3,b-d requires the maintenance of special boundary conditions as I~/-+~, they are only 
of theoretical interest. 

From the configurations which realize a maximum value of i%f*during circumfluence in a 
planar channel, it is possible to construct lattices of symmetric profiles with fronts normal 
to V,. Although such lattices are of no interest in applications, the peculiarities inherent 
in them may also turn out to be characteristic of lattices made up from "supporting" profiles, 
at least, at a low level of the corresponding forces and moments. 

In concluding, we shall make several remarks of a general nature. 
First, the flow around all of the bodies which have been considered in a viscous gas, 

apart from the leading parts , will be accompanied by the Occurrence of developed detached zones 
around the rear ends which changes the whwle picture of the flow. Therefore, even in the 
formulation of the problem, it is advisable to introduce constraints which ensure the wider 
applicability of the results obtained within the framework of an ideal gas. Following /l/, 
this is most simply done by requiring that the angle of slope of the generatrix of the body 

6" (4 to the z-axis should satisfy the inequality 

6v(5)>/6a>--x/2 (3.1) 

with a specified constant &. The introduction of condition (3.1) leads to the replacement of 
the rear ends by the intervals of the straight lines ~),,,(x)~:zI, as shown in Fig.l,k, Fig.2,f 
and Fig.3,e. Of course, when l&,\<.s/2, a discontinuity arises in the neighbourhood of the 
retardation point b. Rwwever, at large Reynolds numbers on passing from the end to the tip, 
the detached zone and, together with it, the effect of viscosity on the flow as a whole 
decreases rapidly. A further detachment may be located in the neighbourhood of the point b' 
to the right of which (P~)~, =(Q iaS),,= CO outside of the dependence on the magnitude of S,. 
In order to get rid of this it is necessary, in addition tw (3.11, to introduce a constraint 
on pr in the form p,G E with a specified positive constant (or function) E and, more 
precisely, on a certain dimensionless combination (the "detachment criterion") which is 
proportional to A+. When this is done, the segment Pr = E appears in the neighbwurhood of 
b' in the case of the optimal contour. 

Secondly, in the example which have been considered, the comparison theorems have enabled 
us to find contours which realize a global maximum for M* and it turned out that all the 
solutions constructed only consist of segments of a boundary extremum either along directions 
(the ends, intervals of the straight lines pi= A and *==@,) or along a phase coordinate 
(the flow line M= 1). On the other hand, within the framework of the traditional approaches 
to the theory of optimal control or variational calculus in gas dynamics, it is only possible 
to satisfy the necessary conditions for a local optimum, and the question regarding the con- 
struction of all possible optimal solutions and the choice of the best of them, i.e. regarding 
the "synthesis of the optimal control", usually remains open. 

Unfortunately, this advantage of comparison theorems is compensated by the narrowness of 
the range of problems to which they can be applied. For instance, the lack of the correspond- 
ing comparison theorem precludes any effecient solution of the problem analogous to those 
considered, for example, in the case of a supporting profile. Since the problems which have 
been solved can be used to work out more-general approaches, the need arises for them to be 
reformulated in the traditional form of variational problems in gas dynamics. The new 
formulation reduces the treatment of the problem to the construction of the contours of bodies 
of fixed maximum permissible length which realize the maximum of S and 61 during subsonic 
(M<i) circumfluence with a specified M,. Without dwelling on the problems associated with 
the use of direct and indirect approaches to the solution of such problems, we shall 
merely mention one instance which arises in work using the method of Lagrange multipliers 
which is widely employed in supersonic gas dynamics /?/. When [*,[(n/Z at the rear re- 
tardation point (Fig.l,k, Fig.Z,f and Fig.3,e) certain derivatives of the flow parameters are 
infinite. Hence, if the point B is displayed during the variation of the contour, it may lead 
to a breakdown in the assumption that all the variations are small which is used in the method 
of Lagrangian multipliers. 

The simplest way to avoid such trouble lies in combining the origin of the coordinate 
system not with the starting cross-section of the body but with the terminal cross-section. 
When this is done, the length of the body is reduced due to a variation in zd for fixed S,ZO, 
By the way, the absence in the case of the contours which have been found of segments of a 
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bilateral extremum indicate the strong dependence of M* on their shape since a deformation 

6Y of the ordinate of the contour on an interval As reduces M* by 0 (6y.A.l). Deformation of 
the same segment of a bilateral extremum would only change M* by 0](6~)~Az]. 

Finally, one last point. It is impossible not to see a number of similar features in 
the problems of hydro- and gas-dynamics which have been considered here and have previously 
been solved. Apart from the end planes which are characteristic, as has already been 
mentioned, in the case oftheleading parts of minimal resistance at supersonic and hypersonic 
velocities, there are, above all, the free lines of flow, where I-= cons, It is interesting 
that the configurations formed by such lines (and again by the ends) ensure minimum resistance 
during cavitational circumfluence by an incompressible fluid /12/ and, moreover, the analysis 
in the latter paper was also based on the invocation of the corresponding comparison theorems. 
As far as the straight sonic lines and the sonic zones adjoining them are concerned, these 
elements are typical in the case of a subsonic flow in dimains with M=l on one of the flow 
boundaries /13/. 

The author thanks V.A. Vostretsov for helping with this research. 
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